
Soĕware Development (2500)
Lecture 9: A Trip to the Casino

M.R.C. van Dongen

October 15, 2010

Contents
1 Overview 1

2 Monte Carlo Integration 1
2.1 Basic Idea . 1
2.2 ăe Area of a Circle . 2
2.3 Implementation . 3

3 ForWednesday 3

1 Overview
ăese lecture notes do not correspond to the book.

2 Monte Carlo Integration

2.1 Basic Idea
ăis section studies another application of random numbers: probabilistic integration. ăe method
which we shall study is calledMonte Carlo integration and we shall study it to approximate the area of
the unit circle. Before doing this, we shall study the general idea.

ăroughout these notes we shall make the same assumptions about “randomness” as before, i.e. if
numbers are randomthen the probability of a givennumber to appear at a certain position in the random
sequence is equal for each number.

In the following we have two shapes: an inner shape I and an outer shape O. ăe area A(O) of O
is known, but we do not know the area A(I) of I. However, we do have a method to generate random
coordinates (dart positions) inside O and we know when a dart is inside I. ăe probability that a ran-
dom dart position is inside I should be equal to A(I)/A(O). (We can get such probabilities if O is

1

a rectangle and the x and y coordinates are selected uniformly from the range of allowed values. For
example, if O is a square and I is the lower third of O, then the probability that a random dart is inside
I should be equal to 1/3.

We now start throwing n darts at random positions in O. When we’re done, we count the number
of darts, i, that are inside I. If n is sufficiently large, then it can be shown that the ratio i/n is a good
approximation of the ratio A(I)/A(O), i.e. i/n ≈ A(I)/A(O). Since we know A(O), n, and i, this
gives us

A(I) ≈ A(O)× i/n . (1)

2.2 ăe Area of a Circle
We shall now apply the ideas from the previous section by approximating the area of the unit circle. Here,
the unit circle is the circle with centre (0, 0) and radius 1. For convenience we let the “extended unit
square” be our outer shape O: it is the square with lower leĕ coordinate (−1,−1) and upper right
coordinate (1, 1). It follows that A(O) = 4. Figure 1 depicts I andO.

1−1

1

−1

x

y

0

Figure 1: Unit circle, I, and the extended unit square,O. ăe area insideO is đlled in blue.

We now throw n = 1000 “darts” at random positions inside O. Figure 2 depicts the situation aĕer
the throwing of the darts. Aĕer careful counting we đnd that i = 793 darts are inside the unit circle.
Plugging A(O) = 4, n = 1000, and i = 793 into Equation 1 gives us A(I) ≈ 4 × 793/1000 =
3.172, which is quite good since it is well known that A(I) = π.(ăis follows from the fact that a circle

2

with radius r has areaπr2.) Choosing larger and larger values for n and repeating the experiment should
lead to more and more accurate approximations.

1−1

1

−1

x

y

0

Figure 2: Situation aĕer throwing 1000 darts at random positions inside the extended unit square. A
cross indicates the position of a dart. Darts that are inside the circle are red. ăe remaining darts are
coloured blue.

2.3 Implementation
A possible implementation is presented in Figure 3. ăe modiđer ‘final’ in the declarations tells the
Java compiler that the assignments to the variables are đnal. Any subsequent assignment to these vari-
ables will now result in an error.

3 ForWednesday
Study the notes and read Chapter 3.

3

import java.util.Random;

public class MonteCarlo {

public static void main(String[] args) {

final Random rand = new Random();

final int totalSamples = 1000000; // Total number of random points.

final double totalArea = 4.0; // Total area of extended square.

int hits = 0; // Initialise number of random points inside circle.

for (int sample = totalSamples sample – != 0;) {

// Generate random point.

double x = 2.0 * (rand.nextDouble() - 0.5);

double y = 2.0 * (rand.nextDouble() - 0.5);

// Increment hits if point is inside circle.

hits += x*x + y*y <= 1.0 ? 1 : 0;

}

// Compute approximation of area of circle.

final double ratio = (double)hits / totalSamples;

final double approximation = totalArea * ratio;

System.out.println(”PI = ” + Math.PI);

System.out.println(”PI ~ ” + approximation);

}

}

Figure 3: Approximating π withMonte Carlo integration.

4

